7.8. Predicted odour contour plots for odour emissions for Scenario 1 – Model 6

Figure 7.8. Predicted odour emission contribution of existing Drogheda WwTP odour sources for Model 6 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}} \text{ m}^{-3}$ (_____) for the 99.5^{th} percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.9. Predicted odour contour plots for odour emissions for Scenario 1 – Model 7

Figure 7.9. Predicted odour emission contribution of existing Drogheda WwTP odour sources for Model 7 to odour plume dispersal for an odour concentration of less than or equal to 1.0 Ou_E m⁻³ (_____) for the 98th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.10. Predicted odour contour plots for odour emissions for Scenario 1 – Model 8

Figure 7.10. Predicted odour emission contribution of existing Drogheda WwTP odour sources for Model 8 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}} \text{ m}^{-3}$ () for the 99.5th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.11. Predicted odour contour plots for odour emissions for Scenario 1 – Model 9

Figure 7.11. Predicted odour emission contribution of existing Drogheda WwTP odour sources for Model 9 to odour plume dispersal for an odour concentration of less than or equal to 1.0 Ou_E m⁻³ (_____) for the 98th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.12. Predicted odour contour plots for odour emissions for Scenario 1 – Model 10

Figure 7.12. Predicted odour emission contribution of existing Drogheda WwTP odour sources for Model 10 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}} \text{ m}^{-3}$ () for the 99.5^{th} percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

- R43 R42 R34 R41 R40 R35 **R33** R32 **R36** R39 **R31 R38** R20 **R37** R30 R29 R19 **R28** R17 R27 R16 R21 **R22** R24 **R18 R23** R25 **R26 R**7 **R8 R6** R5 R9 R10 **R4** R3 **R2** R11 **R1 R12** R13 **R14** R15 500m 0m 250m
- 7.13. Predicted odour contour plots for odour emissions for Scenario 2 Model 11

Figure 7.13. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 11 to odour plume dispersal for an odour concentration of less than or equal to $1.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____), $3.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____) & $5.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____) for the 98th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.14. Predicted odour contour plots for odour emissions for Scenario 2 – Model 12

Figure 7.14. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 12 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}}/\text{m}^3$ (), $3.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (), $5.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (), for the 99.5th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.15. Predicted odour contour plots for odour emissions for Scenario 2 – Model 13

Figure 7.15. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 13 to odour plume dispersal for an odour concentration of less than or equal to 1.0 Ou_E m⁻³ () for the 98th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.16. Predicted odour contour plots for odour emissions for Scenario 2 – Model 14

Figure 7.16. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 14 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}} \text{ m}^{-3}$ (**_____)** for the 99.5th percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.17. Predicted odour contour plots for odour emissions for Scenario 2 – Model 15

Figure 7.17. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 15 to odour plume dispersal for an odour concentration of less than or equal to $1.50 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____), $3.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____), $8.0 \text{ Ou}_{\text{E}}/\text{m}^3$ (_____) for the 98^{th} percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

7.18. Predicted odour contour plots for odour emissions for Scenario 2 – Model 16

Figure 7.18. Predicted odour emission contribution of proposed Drogheda WwTP odour sources for Model 16 to odour plume dispersal for an odour concentration of less than or equal to $3.0 \text{ Ou}_{\text{E}}/\text{m}^3$ () & $5.0 \text{ Ou}_{\text{E}}/\text{m}^3$ () for the 99.5^{th} percentile of hourly averages for worst case meteorological year Dublin Airport 2019.

8. References

- 1. Callan, B.T., (1993). Noses Knows Best. In malodour measurement and control. Proceedings of the International Tydnall School, September. 134-145.
- 2. CEN, (2003). EN13725-Air-quality-Determination of odour concentration by dynamic olfactometry. Brussels, Belgium.
- 3. DOE, (1993). Report by the Inspector on a Public Inquiry into the Appeal by Northumbrian Water Limited for Additional Sewage treatment facilities on land adjacent to Spitial Burns, Newbriggin-by-the-Sea, Northumberland in March 1993. DoE ref APP/F2930/A/92/206240.
- 4. Dravniek, A., (1986). Atlas of odor character profiles. ASTM Committee on sensory evaluation of materials and products, ASTM data series. Baltimore, MD, USA.
- 5. EPA, (2001). Odour impacts and odour emission control measures for intensive agriculture. Commissioned by the Environmental Protection Agency (Ireland). OdourNet UK Ltd.
- 6. Longhurst, P., (1998). Odour impact assessment of an extension to the Brogborough landfill site. IREC, Cranfield University, England.
- 7. McIntyre, A., (2000). Application of dispersion modelling to odour assessment; a practical tool or a complex trap. Water Science and Technology, 41 (6). 81-88.
- 8. Sheridan, B.A. (2002). In house odour intensity and hedonic tone profile data of different odourous sources. Unpublished.
- 9. Sheridan, B.A., (2001). Controlling atmospheric emissions-BAT Note Development, UCD Environmental Engineering Group, Department of Agricultural and Food Engineering, UCD, Dublin 2.
- 10. Sheridan, B.A., Hayes, E.T., Curran, T.P., Dodd, V.A., (2003). A dispersion modelling approach to determining the odour impact of intensive pig production units in Ireland. Bioresource Technology. Published.

9. *Appendix III* - Meteorological data examined and used in the dispersion modelling exercise

Table 9.1. Tabular illustration of Dublin Airport meteorological files for Years 2015 to 2019 inclusive (5 years).

5 year Meteorological file for Dublin Airport 2015 to 2019 inclusive							
Dir \ Speed	<= 1.54 m/s	<= 3.09 m/s	<= 5.14 m/s	<= 8.23 m/s	<= 10.80 m/s	> 10.80 m/s	Total
0.0	0.36	0.48	0.80	0.39	0.09	0.00	2.12
22.5	0.21	0.36	0.85	0.39	0.06	0.00	1.88
45.0	0.15	0.36	1.54	0.61	0.09	0.00	2.75
67.5	0.10	0.31	1.52	0.84	0.28	0.07	3.11
90.0	0.32	0.62	1.97	0.95	0.29	0.12	4.27
112.5	0.59	1.01	2.26	0.79	0.13	0.03	4.81
135.0	0.60	1.24	3.61	2.32	0.56	0.13	8.45
157.5	0.55	0.91	1.76	1.20	0.50	0.18	5.09
180.0	0.41	0.57	0.95	0.76	0.29	0.07	3.05
202.5	0.42	0.82	2.41	2.65	0.80	0.29	7.40
225.0	0.44	1.06	4.99	4.89	1.49	0.57	13.44
247.5	0.43	1.08	5.14	5.36	2.40	1.13	15.54
270.0	0.38	0.98	5.18	5.07	1.89	0.69	14.19
292.5	0.46	0.78	3.04	1.97	0.41	0.20	6.86
315.0	0.44	0.56	1.84	1.22	0.24	0.04	4.33
337.5	0.41	0.45	1.10	0.60	0.10	0.01	2.67
Total	6.25	11.58	38.98	30.02	9.61	3.52	99.96
Calms	-	-	-	-	-	-	0.04
Missing	-	-	-	-	-	-	0.00
Total	-	-	-	-	-	-	100.00

Irish Water

Figure 9.1. Windrose illustration of meteorological files Dublin Airport 2015 to 2019 inclusive.